close
close

Emergent constraint on oxygenation of the upper South Eastern Pacific oxygen minimum zone in the twenty-first century

  • Gallo, N. D. & Levin, L. A. Fish ecology and evolution in the world’s oxygen minimum zones and implications of ocean deoxygenation. Adv. Mar. Biol. 74, 117–198 (2016).

    Article 
    CAS 

    Google Scholar 

  • Deutsch, C., Penn, J. L. & Seibel, B. Metabolic trait diversity shapes marine biogeography. Nature 585, 557–562 (2020).

    Article 
    CAS 

    Google Scholar 

  • Breitburg, D. et al. Declining oxygen in the global ocean and coastal waters. Science 359, eaam7240 (2018).

    Article 

    Google Scholar 

  • Wyrtki, K. Physical oceanography of the Southeast Asian waters (Vol. 2). University of California, Scripps Institution of Oceanography. (1961).

  • Karstensen, J., Stramma, L. & Visbeck, M. Oxygen minimum zones in the eastern tropical Atlantic and Pacific oceans. Prog. Oceanogr. 77, 331–350 (2008).

    Article 

    Google Scholar 

  • Helly, J. J. & Levin, L. A. Global distribution of naturally occurring marine hypoxia on continental margins. Deep Sea Res. Part I: Oceanogr. Res. Pap. 51, 1159–1168 (2004).

    Article 
    CAS 

    Google Scholar 

  • Paulmier, A. & Ruiz-Pino, D. Oxygen minimum zones (OMZs) in the modern ocean. Prog. Oceanogr. 80, 113–128 (2009).

    Article 

    Google Scholar 

  • Kalvelage, T. et al. Aerobic microbial respiration in oceanic oxygen minimum zones. PloS One 10, e0133526 (2015).

    Article 

    Google Scholar 

  • Lam, P. et al. Revising the nitrogen cycle in the Peruvian oxygen minimum zone. Proc. Natl Acad. Sci. 106, 4752–4757 (2009).

    Article 
    CAS 

    Google Scholar 

  • Wishner, K. F., Seibel, B. & Outram, D. Ocean deoxygenation and copepods: coping with oxygen minimum zone variability. Biogeosciences 17, 2315–2339 (2020).

    Article 

    Google Scholar 

  • Bertrand, A. et al. Oxygen: a fundamental property regulating pelagic ecosystem structure in the coastal southeastern tropical Pacific. PloS One 6, e29558 (2011).

    Article 
    CAS 

    Google Scholar 

  • Paulmier, A. et al. High-sustained concentrations of organisms at very low oxygen concentration indicated by acoustic profiles in the oxygen deficit region off Peru. Front. Mar. Sci. 8, 723056 (2021).

    Article 

    Google Scholar 

  • Stramma, L., Johnson, G. C., Sprintall, J. & Mohrholz, V. Expanding oxygen-minimum zones in the tropical oceans. Science 320, 655–658 (2008).

  • Schmidtko, S., Stramma, L. & Visbeck, M. Decline in global oceanic oxygen content during the past five decades. Nature 542, 335–339 (2017).

    Article 
    CAS 

    Google Scholar 

  • Grégoire, M. et al. A global ocean oxygen database and Atlas for assessing and predicting deoxygenation and ocean health in the open and coastal ocean. Front. Mar. Sci. 1638 (2021).

  • Cabré, A., Marinov, I., Bernardello, R. & Bianchi, D. Oxygen minimum zones in the tropical Pacific across CMIP5 models: mean state differences and climate change trends. Biogeosciences 12, 5429–5454 (2015).

    Article 

    Google Scholar 

  • Busecke, J. J. M., Resplandy, L., Ditkovsky, S. J. & John, J. G. Diverging fates of the Pacific Ocean oxygen minimum zone and its core in a warming world. AGU Adv. 3, e2021AV000470 (2022).

    Article 

    Google Scholar 

  • Oschlies, A., Brandt, P., Stramma, L. & Schmidtko, S. Drivers and mechanisms of ocean deoxygenation. Nat. Geosci. 11, 467–473 (2018).

    Article 
    CAS 

    Google Scholar 

  • Pitcher G.C. et al. System controls of coastal and open ocean oxygen depletion. Prog. Oceanogr. https://doi.org/10.1016/j.pocean.2021.102613. (2021)

  • Duteil, O., Frenger, I. & Getzlaff, J. The riddle of eastern tropical Pacific ocean oxygen levels: the role of the supply by intermediate-depth waters. Ocean Sci. 17, 1489–1507 (2021).

    Article 

    Google Scholar 

  • Zhu, C., Liu, Z. & Gu, S. Model bias for South Atlantic Antarctic intermediate water in CMIP5. Clim. Dyn. 50, 3613–3624 (2018).

    Article 

    Google Scholar 

  • Sloyan, B. M. & Kamenkovich, I. V. Simulation of subantarctic mode and Antarctic intermediate waters in climate models. J. Clim. 20, 5061–5080 (2007).

    Article 

    Google Scholar 

  • Fuenzalida, R., Schneider, W., Garcés-Vargas, J., Bravo, L. & Lange, C. Vertical and horizontal extension of the oxygen minimum zone in the eastern South Pacific Ocean. Deep Sea Res. Part II: Top. Stud. Oceanogr. 56, 992–1003 (2009).

    Article 
    CAS 

    Google Scholar 

  • Johnson, G. C. & Moore, D. W. The Pacific subsurface countercurrents and an inertial model. J. Phys. Oceanogr. 27, 2448–2459 (1997).

    Article 

    Google Scholar 

  • Tsuchiya, M. A subsurface north equatorial countercurrent in the eastern Pacific Ocean. J. Geophys. Res. 77, 5981–5986 (1972).

    Article 

    Google Scholar 

  • Montes, I. et al. High-resolution modeling of the Eastern Tropical Pacific oxygen minimum zone: sensitivity to the tropical oceanic circulation. J. Geophys. Res.: Oceans 119, 5515–5532 (2014).

    Article 
    CAS 

    Google Scholar 

  • Hall, A. & Qu, X. Using the current seasonal cycle to constrain snow albedo feedback in future climate change. Geophys. Res. Lett. 33, L03502 (2006).

    Article 

    Google Scholar 

  • De La Maza, L. & Farías, L. The intensification of coastal hypoxia off central Chile: long term and high frequency variability. Front. Earth Sci. 10, 929271 (2023).

    Article 

    Google Scholar 

  • Graco, M. I. et al. The OMZ and nutrient features as a signature of interannual and low-frequency variability in the Peruvian upwelling system. Biogeosciences 14, 4601–4617 (2017).

    Article 
    CAS 

    Google Scholar 

  • Morales, C., Hormazabal, S. & Blanco, J. L. Interannual variability in the mesoscale distribution of the depth of the upper boundary of the oxygen minimum layer off northern Chile (18°–24°S): Implications for the pelagic system and biogeochemical cycling. J. Mar. Res. 57, 909–932 (1999).

    Article 
    CAS 

    Google Scholar 

  • Vergara, O., B. Dewitte, M. Ramos and O. Pizarro. Vertical energy flux at ENSO time scales in the subthermocline of the Southeastern Pacific. J. Geophys. Res. Oceans 122, https://doi.org/10.1002/2016JC012614. (2017).

  • Clarke, A. J. & Van Gorder, S. On ENSO coastal currents and sea levels. J. Phys. Oceanogr. 24, 661–680 (1994).

    Article 

    Google Scholar 

  • Dewitte, B. et al. Change in El Niño flavours over 1958–2008: implications for the long-term trend of the upwelling off Peru. Deep Sea Res. Part II: Top. Stud. Oceanogr. 77, 143–156 (2012).

    Article 

    Google Scholar 

  • Pizarro, O., Clarke, A. J. & Van Gorder, S. El Niño sea level and currents along the South American coast: comparison of observations with theory. J. Phys. Oceanogr. 31, 1891–1903 (2001).

    Article 

    Google Scholar 

  • Pizarro, O., Shaffer, G., Dewitte, B. & Ramos, M. Dynamics of seasonal and interannual variability of the Peru‐Chile undercurrent. Geophys. Res. Lett. 29, 22–1 (2002).

    Article 

    Google Scholar 

  • Sprintall, J., S. Cravatte, B. Dewitte, Y. Du and A. S. Gupta. Oceanic teleconnections, chapter 15 in “El Nino in a changing climate” AGU Book, ISBN: 978-1-119-54816-4, 528 (2020).

  • Köhn, E. E., Münnich, M., Vogt, M., Desmet, F. & Gruber, N. Strong habitat compression by extreme shoaling events of hypoxic waters in the Eastern Pacific. J. Geophys. Res.: Oceans 127, e2022JC018429 (2022).

    Article 

    Google Scholar 

  • Leung, S., Thompson, L., McPhaden, M. J. & Mislan, K. A. S. ENSO drives near-surface oxygen and vertical habitat variability in the tropical Pacific. Environ. Res. Lett. 14, 064020 (2019).

    Article 
    CAS 

    Google Scholar 

  • Busecke, J. J. M., Resplandy, L. & Dunne, J. P. The equatorial undercurrent and the oxygen minimum zone in the Pacific. Geophys. Res. Lett. 46, 6716–6725 (2019).

    Article 
    CAS 

    Google Scholar 

  • Shigemitsu, M., Yamamoto, A., Oka, A. & Yamanaka, Y. One possible uncertainty in CMIP5 projections of low‐oxygen water volume in the Eastern Tropical Pacific. Glob. Biogeochem. Cycles 31, 804–820 (2017).

    Article 

    Google Scholar 

  • Ito, T. & Deutsch, C. Variability of the Oxygen Minimum Zone in the Tropical North Pacific during the late twentieth century. Glob. Biogeochem. Cycles 27, 1119–1128 (2013).

    Article 
    CAS 

    Google Scholar 

  • José, Y. S., Stramma, L., Schmidtko, S., & Oschlies, A. (2019). ENSO-driven fluctuations in oxygen supply and vertical extent of oxygen-poor waters in the oxygen minimum zone of the Eastern Tropical South Pacific. Biogeosci. Discuss. 1–20 (2019).

  • Conejero, C., Dewitte, B., Garçon, V., Sudre, J. & Montes, I. ENSO diversity driving low-frequency change in mesoscale activity off Peru and Chile. Sci. Rep. 10, 17902 (2020).

    Article 
    CAS 

    Google Scholar 

  • Espinoza-Morriberón, D. et al. Oxygen variability during ENSO in the tropical South Eastern Pacific. Front. Mar. Sci. 5, 526 (2019).

    Article 

    Google Scholar 

  • Gutierrez, D. et al. Oxygenation episodes on the continental shelf of central Peru: remote forcing and benthic ecosystem response. Prog. Oceanogr. 79, 177–189 (2008).

    Article 

    Google Scholar 

  • Mogollón, R. & Calil, P. H. R. On the effects of ENSO on ocean biogeochemistry in the Northern Humboldt Current System (NHCS): a modeling study. J. Mar. Syst. 172, 137–159 (2017).

    Article 

    Google Scholar 

  • Duteil, O., Oschlies, A. & Böning, C. W. Pacific decadal oscillation and recent oxygen decline in the eastern tropical Pacific Ocean. Biogeosciences (BG) 15, 7111–7126 (2018).

    Article 
    CAS 

    Google Scholar 

  • Pizarro, O., & Montecinos, A. Interdecadal variability of the thermocline along the west coast of South America. Geophys. Res. Lett. 31 (2004)

  • Oschlies, A. et al. Patterns of deoxygenation: sensitivity to natural and anthropogenic drivers. Philos. Trans. R. Soc. A 375, 20160325 (2017).

    Article 

    Google Scholar 

  • Ito, T. & Deutsch, C. A conceptual model for the temporal spectrum of oceanic oxygen variability. Geophys. Res. Lett. 37, L03601 (2010).

    Article 

    Google Scholar 

  • Capotondi, A., Wittenberg, A. T., Kug, J. S., Takahashi, K., & McPhaden, M. J. ENSO diversity. El Niño Southern Oscillation in a changing climate. 4, 65–86 (2020)

  • Cai, W. et al. Increased variability of eastern Pacific El Niño under greenhouse warming. Nature 564, 201–206 (2018).

    Article 
    CAS 

    Google Scholar 

  • Cai, W. et al. Changing El Niño–Southern Oscillation in a warming climate. Nat. Rev. Earth Environ. 2, 628–644 (2021).

    Article 

    Google Scholar 

  • Takahashi, K., Montecinos, A., Goubanova, K., & Dewitte, B. ENSO regimes: reinterpreting the canonical and Modoki El Niño. Geophys. Res. Lett. 38 (2011).

  • Wenzel, S., Cox, P. M., Eyring, V. & Friedlingstein, P. Emergent constraints on climate‐carbon cycle feedbacks in the CMIP5 Earth system models. J. Geophys. Res.: Biogeosci. 119, 794–807 (2014).

    Article 
    CAS 

    Google Scholar 

  • Cox, P. M. Emergent constraints on climate-carbon cycle feedbacks. Curr. Clim. Change Rep. 5, 275–281 (2019).

    Article 

    Google Scholar 

  • Hall, A., Cox, P., Huntingford, C. & Klein, S. Progressing emergent constraints on future climate change. Nat. Clim. Change 9, 269–278 (2019).

    Article 

    Google Scholar 

  • Kwiatkowski, L. et al. Emergent constraints on projections of declining primary production in the tropical oceans. Nat. Clim. Change 7, 355–358 (2017).

    Article 
    CAS 

    Google Scholar 

  • Terhaar, J., Kwiatkowski, L. & Bopp, L. Emergent constraint on Arctic Ocean acidification in the twenty-first century. Nature 582, 379–383 (2020).

    Article 
    CAS 

    Google Scholar 

  • Brient, F. Reducing uncertainties in climate projections with emergent constraints: concepts, examples and prospects. Adv. Atmos. Sci. 37, 1–15 (2020).

    Article 

    Google Scholar 

  • Cocco, V. et al. Oxygen and indicators of stress for marine life in multi-model global warming projections. Biogeosciences 10, 1849–1868 (2013).

    Article 
    CAS 

    Google Scholar 

  • Bopp, L. et al. Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models. Biogeosciences 10, 6225–6245 (2013).

    Article 

    Google Scholar 

  • Cai, W. et al. Climate impacts of the El Niño–Southern Oscillation on South America. Nat. Rev. Earth Environ. 1, 215–231 (2020a).

    Article 

    Google Scholar 

  • Duteil, O., Böning, C. W. & Oschlies, A. Variability in subtropical-tropical cells drives oxygen levels in the tropical Pacific Ocean. Geophys. Res. Lett. 41, 8926–8934 (2014).

    Article 
    CAS 

    Google Scholar 

  • Koutavas, A., Demenocal, P. B., Olive, G. C. & Lynch-Stieglitz, J. Mid-Holocene El Niño-Southern Oscillation (ENSO) attenuation revealed by individual foraminifera in eastern tropical Pacific sediments. Geology 34, 993e996 (2006).

    Article 

    Google Scholar 

  • Mollier-Vogel, E. et al. Mid-Holocene deepening of the Southeast Pacific oxycline. Glob. Planet. Change 172, 365–373 (2019).

    Article 

    Google Scholar 

  • Muñoz, P. et al. Reconstructing past variations in environmental conditions and paleoproductivity over the last ~8000 years off north-central Chile (30°S). Biogeosciences 17, 5763–5785 (2020).

    Article 

    Google Scholar 

  • Salvatteci, R. et al. Centennial to millennial-scale changes in oxygenation and productivity in the Eastern Tropical South Pacific during the last 25000 years. Quat. Sci. Rev. 131, 102–117 (2016).

    Article 

    Google Scholar 

  • Shin, N. Y. et al. More frequent central Pacific El Niño and stronger eastern pacific El Niño in a warmer climate. npj Clim. Atmos. Sci. 5, 101 (2022).

    Article 

    Google Scholar 

  • Carréric, A. et al. Change in strong Eastern Pacific El Niño events dynamics in the warming climate. Clim. Dyn. 54, 901–918 (2020).

    Article 

    Google Scholar 

  • Lopez, H., Lee, S. K., Kim, D., Wittenberg, A. T. & Yeh, S. W. Projections of faster onset and slower decay of El Niño in the 21st century. Nat. Commun. 13, 1915 (2022).

    Article 
    CAS 

    Google Scholar 

  • Cai, W. et al. Butterfly effect and a self-modulating El Niño response to global warming. Nature 585, 68–73 (2020b).

    Article 
    CAS 

    Google Scholar 

  • Frölicher, T. L., Joos, F., Plattner, G. K., Steinacher, M., & Doney, S. C. Natural variability and anthropogenic trends in oceanic oxygen in a coupled carbon cycle–climate model ensemble. Glob. Biogeochem. Cycles, 23 (2009).

  • Frölicher, T. L. et al. Contrasting upper and deep ocean oxygen response to protracted global warming. Glob. Biogeochem. Cycles 34, e2020GB006601 (2020).

    Article 

    Google Scholar 

  • Auderset, A. et al. Enhanced ocean oxygenation during Cenozoic warm periods. Nature 609, 77–82 (2022).

    Article 
    CAS 

    Google Scholar 

  • Cardich, J. et al. Multidecadal changes in marine subsurface oxygenation off central Peru during the last ca. 170 years. Front. Mar. Sci. 6, 270 (2019).

    Article 

    Google Scholar 

  • Glock, N., Erdem, Z. & Schönfeld, J. The Peruvian oxygen minimum zone was similar in extent but weaker during the Last Glacial Maximum than Late Holocene. Commun. Earth Environ. 3, 307 (2022).

    Article 

    Google Scholar 

  • Hess, A. V. et al. A well-oxygenated eastern tropical Pacific during the warm Miocene. Nature, 619, 521–525 (2023).

  • Moffitt, S. E. et al. Paleoceanographic insights on recent oxygen minimum zone expansion: lessons for modern oceanography. PloS one 10, e0115246 (2015).

    Article 

    Google Scholar 

  • Galeotti, S. et al. Evidence for active El Niño Southern Oscillation variability in the Late Miocene greenhouse climate. Geology 38, 419–422 (2010).

    Article 
    CAS 

    Google Scholar 

  • Cobb, K. M. et al. Highly variable El Niño-Southern Oscillation throughout the holocene. Science 339, 67–70 (2013).

    Article 
    CAS 

    Google Scholar 

  • McGregor, S., Timmermann, A., England, M. H., Timm, O. E. & Wittenberg, A. T. Inferred changes in El Niño–Southern oscillation variance over the past six centuries. Clim 9, 2269–2284 (2013).

    Google Scholar 

  • Séférian, R. et al. Tracking improvement in simulated marine biogeochemistry between CMIP5 and CMIP6. Curr. Clim. Change Rep. 6, 95–119 (2020).

    Article 

    Google Scholar 

  • Payne, M. R. et al. Uncertainties in projecting climate-change impacts in marine ecosystems. ICES J. Mar. Sci. 73, 1272–1282 (2016).

    Article 

    Google Scholar 

  • Gruber, N. et al. Eddy-induced reduction of biologicalproduction in eastern boundary upwelling systems. Nat. Geosci. 4, 787–792 (2011).

  • Vergara, O. et al. Seasonal variability of the Oxygen Minimum Zone off Peru in a high-resolution regional coupled model. Biogeosciences 13, 4389–4410 (2016).

    Article 

    Google Scholar 

  • Bettencourt J. et al. Boundaries of the Oxygen Minimum Zone shaped by coherent mesoscale dynamics. Nat. Geosci. https://doi.org/10.1038/NGEO2570. (2015).

  • Pizarro-Koch, M. et al. On the interpretation of changes in OMZ volume off Central Chile during two La Niña events (2001 and 2007). Front. Mar. Sci. https://doi.org/10.3389/fmars.2023.1155932 (2023).

  • Thomsen, S. et al. Do submesoscale frontal processes ventilate the oxygen minimum zone off Peru? Geophys. Res. Lett. 43, 8133–8142 (2016).

    Article 
    CAS 

    Google Scholar 

  • Xiu, P. & Chai, F. Eddies affect subsurface phytoplankton and oxygen distributions in the North Pacific subtropical gyre. Geophys. Res. Lett. 47, e2020GL087037 (2020).

    Article 
    CAS 

    Google Scholar 

  • Chen, C., Cane, M. A., Wittenberg, A. T. & Chen, D. ENSO in the CMIP5 simulations: life cycles, diversity, and responses to climate change. J. Clim. 30, 775–801 (2017).

    Article 

    Google Scholar 

  • Long, A. M., Jurgensen, S. K., Petchel, A. R., Savoie, E. R., & Brum, J. R. Microbial ecology of oxygen minimum zones amidst ocean deoxygenation. Front. Microbiol. 12, 748961 (2021).

  • Ito, T. Optimal interpolation of global dissolved oxygen: 1965–2015. Geosci. Data J. https://doi.org/10.1002/gdj3.130 (2021).

  • Kessler, W.S., S. Cravatte, & Lead Authors. Final Report of TPOS 2020. GOOS–268, 83 pp. (Available online at https://tropicalpacific.org/tpos2020-project-archive/reports/) (2021).

  • Garçon, V. et al. Multidisciplinary observing in the world ocean’s oxygen minimum zone regions: from climate to fish—the VOICE Initiative. Front. Mar. Sci. 6, 722 (2019).

    Article 

    Google Scholar 

  • Smith, N. et al. Tropical pacific observing system. Front. Mar. Sci. https://doi.org/10.3389/fmars.2019.00031. (2019).

  • Stammer, S. et al. Ocean climate observing requirements in support of climate research and climate information. Front. Mar. Sci. https://doi.org/10.3389/fmars.2019.00444. (2019).

  • Ridgway, K. R., Dunn, J. R. & Wilkin, J. L. Ocean interpolation by four-dimensional least squares -Application to the waters around Australia. J. Atmos. Ocean. Tech. 19, 1357–1375 (2002).

  • Rayner, N. A. et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. 108, 4407 (2003).

  • Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteor. Soc. 93, 485–498 (2012).

    Article 

    Google Scholar 

  • Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).

    Article 

    Google Scholar 

  • Kay, J. E. et al. The community earth system model (CESM) large ensemble project: a community resource for studying climate change in the presence of internal climate variability. Bull. Am. Meteorol. Soc. 96, 1333–1349 (2015).

    Article 

    Google Scholar 

  • O’Neill, B. C. et al. The roads ahead: Narratives for shared socioeconomic pathways describing world futures in the 21st century. Glob. Environ. Change 42, 169–180 (2017).

    Article 

    Google Scholar 

  • Gutknecht, E. et al. Coupled physical/biogeochemical modeling including O2-dependent processes in the Eastern Boundary Upwelling Systems: application in the Benguela. Biogeosciences 10, 3559–3591 (2013a).

    Article 

    Google Scholar 

  • Gutknecht, E. et al. Nitrogen transfers off Walvis Bay: a 3-D coupled physical/biogeochemical modeling approach in the Namibian upwelling system. Biogeosciences 10, 4117–4135 (2013b).

    Article 

    Google Scholar 

  • Pizarro-Koch M. et al. Seasonal variability of the southern tip of the Oxygen Minimum Zone in the Eastern South Pacific (30°–38°S): a modeling study. J. Geophys. Res.-Oceans. 124, 8574–8604 (2019)

  • Karamperidou, C., Jin, F.-F. & Conroy, J. L. The importance of ENSO nonlinearities in tropical pacific response to external forcing. Clim. Dyn. 49, 2695–2704 (2017).

    Article 

    Google Scholar 

  • White, H. G. Skewness, kurtosis and extreme values of Northern Hemisphere geopotential heights. Mon. Weather Rev. 108, 1446–1455 (1980).

    Article 

    Google Scholar 

  • Kwiatkowski, L. et al. Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections. Biogeosciences 17, 3439–3470 (2020).

    Article 
    CAS 

    Google Scholar 

  • Matveeva, T., Gushchina, D. & Dewitte, B. The seasonal relationship between intraseasonal tropical variability and ENSO in CMIP5. Geosci. Model Dev. 11, 2373–2392 (2018).

    Article 

    Google Scholar